701 research outputs found

    Ferromagnetic insulating phase in Pr{1-x}Ca{x}MnO3

    Full text link
    A ferromagnetic insulating (FM-I) state in Pr0.75Ca0.25MnO3 has been studied by neutron scattering experiment and theoretical calculation. The insulating behavior is robust against an external magnetic field, and is ascribed to neither the phase separation between a ferromagnetic metallic (FM-M) phase and a non-ferromagnetic insulating one, nor the charge ordering. We found that the Jahn-Teller type lattice distortion is much weaker than PrMnO3 and the magnetic interaction is almost isotropic. These features resembles the ferromagnetic metallic state of manganites, but the spin exchange interaction J is much reduced compared to the FM-M state. The theoretical calculation based on the staggered type orbital order well reproduces several features of the spin and orbital state in the FM-I phase.Comment: REVTeX4, 10 pages, 9 figure

    Ordering Process and Its Hole Concentration Dependence of the Stripe Order in La{2-x}Sr{x}NiO{4}

    Full text link
    Ordering process of stripe order in La{2-x}Sr{x}NiO{4} with x being around 1/3 was investigated by neutron diffraction experiments. When the stripe order is formed at high temperature, incommensurability \epsilon of the stripe order has a tendency to show the value close to 1/3 for the samples with x at both sides of 1/3. With decreasing temperature, however, \epsilon becomes close to the value determined by the linear relation of \epsilon = n_h, where n_h is a hole concentration. This variation of the \epsilon strongly affects the character of the stripe order through the change of the carrier densities in stripes and antiferromagnetic domains.Comment: 5 pages, 3 figures, REVTeX, to be published in Phys. Rev.

    Novel stripe-type charge ordering in the metallic A-type antiferromagnet Pr{0.5}Sr{0.5}MnO{3}

    Full text link
    We demonstrate that an A-type antiferromagnetic (AFM) state of Pr{0.5}Sr{0.5}MnO{3} exhibits a novel charge ordering which governs the transport property. This charge ordering is stripe-like, being characterized by a wave vector q ~ (0,0,0.3) with very anisotropic correlation parallel and perpendicular to the stripe direction. This charge ordering is specific to the manganites with relatively wide one-electron band width (W) which often exhibit a metallic A-type AFM state, and should be strictly distinguished from the CE-type checkerboard-like charge ordering which is commonly observed in manganites with narrower W such as La{1-x}Ca{x}MnO{3} and Pr{1-x}Ca{x}MnO{3}.Comment: REVTeX4, 5 pages, 4 figure

    The Effect of ff-dd Magnetic Coupling in Multiferroic RRMnO3_3 Crystals

    Full text link
    We have established detailed magnetoelectric phase diagrams of (Eu0.595_{0.595}Y0.405_{0.405})1−x_{1-x}Tbx_xMnO3_3 (0≤x≤10 \le x \le 1) and (Eu,Y)1−x_{1-x}Gdx_xMnO3_3 (0≤x≤0.690 \le x \le 0.69), whose average ionic radii of RR-site (RR: rare earth) cations are equal to that of Tb3+^{3+}, in order to reveal the effect of rare earth 4ff magnetic moments on the magnetoelectric properties. In spite of the same RR-site ionic radii, the magnetoelectric properties of the two systems are remarkably different from each other. A small amount of Tb substitution on RR sites (x∼0.2x \sim 0.2) totally destroys ferroelectric polarization along the a axis (PaP_a), and an increase in Tb concentration stabilizes the PcP_c phase. On the other hand, Gd substitution (x∼0.2x \sim 0.2) extinguishes the PcP_c phase, and slightly suppresses the PaP_a phase. These results demonstrate that the magnetoelectric properties of RRMnO3_3 strongly depend on the characteristics of the rare earth 4ff moments.Comment: 10 pages, 5 figures Submitted to Journal of the Physical Society of Japa

    Orbital Ordering Structures in (Nd,Pr)0.5Sr0.5MnO3 Manganite Thin Films on Perovskite (011) Substrates

    Full text link
    Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films' resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.Comment: 19pages, 11 figure

    Commensurate-Incommensurate transition in the melting process of the orbital ordering in Pr0.5Ca0.5MnO3: neutron diffraction study

    Full text link
    The melting process of the orbital order in Pr0.5Ca0.5MnO3 single crystal has been studied in detail as a function of temperature by neutron diffraction. It is demonstrated that a commensurate-incommensurate (C-IC) transition of the orbital ordering takes place in a bulk sample, being consistent with the electron diffraction studies. The lattice structure and the transport properties go through drastic changes in the IC orbital ordering phase below the charge/orbital ordering temperature Tco/oo, indicating that the anomalies are intimately related to the partial disordering of the orbital order, unlike the consensus that it is related to the charge disordering process. For the same T range, partial disorder of the orbital ordering turns on the ferromagnetic spin fluctuations which were observed in a previous neutron scattering study.Comment: 5 pages, 2 figures, REVTeX, to be published in Phys. Rev.
    • …
    corecore